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Abstract:  The Nonlinearity of differential equations has been a hard to crack nut for years. Recently many researchers have 

devised several approximate methods of handling it. In this work the Laplace Transform Series Decomposition 

Method (LTSDM) for solving nonlinear VolterraIntegro Differential Equation is presented. The method is based 

on the elegant combination of Laplace Transform method, Series expansion method and Adomian polynomial. The 

numerical results obtained in this work are favourablycompared with the exact solutions and the Modified 

Homotopy Perturbation Method (MHPM). The compared results clearly showed that the LTSDM is a powerful, 

accurate, reliable and efficient method. 
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Introduction 

An integro-differential equation is defined by Volterra (1959) 

and Filiz (2013) as a functional equation in which the 

unknown function appears in the form of its Derivative as 

well as under the integral sign. Volterra (1931) studied the 

hereditary influences when he was examining a population 

growth model. The research work resulted in a specific topic, 

where both differential and integral operators appeared 

together in the same equation. This new type of equations was 

termed as Volterraintegro-differential equations. 

 

The general nonlinear Volterraintegro-differential equation is given as; 
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Where: y(n)(x) is the nth derivative of the unknown function y(x) that is to be determined, k(x,t) is the kernel of the integral 

equation, f(x) is a known analytic function, R(y) and N(y) are linear and nonlinear functions, respectively. For n=0, (1) turns out 

to be a classical nonlinear integral equation. 
 

Any Volterraintegro-differential equation is characterized by 

the existence of one or more of the derivatives y′ (x), y″ (x), 

outside the integral sign. The Volterraintegro-differential 

equations may be observed when we convert an initial value 

problem to an integral equation by using Leibnitz rule. 

Based on the nature of the equation, Integro-differential 

equations are usually difficult to solve analytically so it is 

required that we seek an efficient approximate solution. Few 

out of several numerical methods for approximating the 

Fredholm or volterra-integro-differential equations are 

discussed below. Bahugunaet al (2009) examine a 

comparative study of numerical methods for solving 

anintegro-differential equation using Laplace, Abdul-

Majidwazwaz (2010)  applied the combined Laplace 

transform–Adomian decomposition method for handling 

nonlinear Volterraintegro–differential equations, 

Manafianheris (2012) applied Modified Laplace 

Decomposition to integro differential equation, Majid (2015) 

introduce a new algorithm for higher order integro-differential 

equations called modified Laplace decomposition,Sepehrian 

and Razzaghi (2004) proposed Single-term Walsh series 

method for solving volterraintegro-differential equations, 

Brunner (1982) applied a collocation-type method to 

Volterra-Hammerstein integral equation as well as integro-

differential equations. Compact finite difference method has 

been used for integro-differential equations by Zhao and 

Corless (2006) while Yalcinbas (2002), Akyaz and Sezer 

(1999) and Avudainayagam and Vani (2000) used Taylor 

series, Chebyshev collocation and Wavelet-Galerkin methods, 

respectively to obtained the solution of integro-differential 

equation.  

In recent years, the application of homotopy perturbation 

method (HPM) and it’s modification (MHPM) in nonlinear 

problems has been developed by scientists and engineers (He, 

2004, 2005a, 2005b; Afrouzi et al., 2011), because this 

method reduces the difficult problem under study into a 

simple problem which is easy to solve. Most perturbation 

methods assume that a small parameter exists, but most 

nonlinear problems have no small parameter at all. Therefore 

many new methods, such as the variational method by Liu 

(2004, 2005), variational iterations method by He (1998a, 

1998b), are proposed to eliminate the shortcoming arising in 

the small parameter assumption. A review of recently 

developed nonlinear analysis methods can be found in He 

(2000). In this paper, we propose the use of Laplace 

Transform Series Decomposition Method to solve both 

second and fourth order nonlinear Volterraintegro-differential 

equations and the comparisons of results obtained by LTSDM 

are made with the exact and modified homotopy perturbation 

method. 

 

The Method Formulation 
Consider the nth order integro-differential equation of the form; 
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Assuming ( )f x  has a series expansion, finds its series expansion and then applies the Laplace transformation on both sides of 

(2) 
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Using the differentiation property of the Laplace transform, we have  
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Further simplification of (5) resulted into 
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The standard Adomian Decomposition method defines the solution  )(xy  by the series 
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Where 

nA are the special polynomials called the  Adomian polynomials of 0y , 1y , 2y , 3y ,…, ny   define by Wazwaz in [11] as 
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Substitute (7) and (8) into (6) to have 
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Using the condition in (3), recursive relation )],...([)],([)],([ 210 xyLxyLxyL are obtained. 

 

Taking the Laplace inverse of the recursive relation obtained resulted into the general solution; 
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Numerical Application 

Problem 1: 

2

0

1 1
( ) sinh cosh sinh ( ) , (0) 0, (0) 1 (12)

2 2

x

y x x x x x y t dt y y        

 The exact Solution and the LTSDM solution of problem are:   
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The exact Solution, the LTSDM solution and MHPM solution of problem are: 

 

2 3 4 5 6

7 5 8 5 9 5 10

2 3 5 6

7

( )

1 0.5 0.166667 0.08333 0.008333 0.00138889

0.0001984127 2.480157 10 2.204586 10 3.196649 10 ...

1 0.5 0.166667 0.025 0.0125

0.005357142857 0.001

xy x e

LTSDM x x x x x x

x x x x

MHPM x x x x x
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Problem 3: 
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Since (13) is an initial boundary value problem (IBVP), an assumption is made that

 

(0) (15)y k   

Having obtained the general solution ( )y x in terms of k using LTSDM, the boundary condition (1)y e  is imposed on it in 

order to find the value 1.000309600k   
The exact Solution, the LTSDM solution and MHPM solution of problem are: 

2 4 5 6

7 8 8 9 10

2 3 5 6

( )

1 0.5 0.0416667 0.008333 0.00138931169

0.0001985334072 3.017718 10 0.00001377195254 0.000006612499234 ...

1 0.5 0.2308342493 0.008333334 0.003312507633

xy x e

LTSDM x x x x x

x x x x

MHPM x x x x x
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Results and Discussion 

Table 1: Comparison of the results obtained by LTSDM with the exact for problem 1 

 
x Exact LTSDM LTSDM error 

0 0 0 0 

0.1 0.10016675100 0.100166751002 1.987459*10-11 

0.2 0.20133600250 0.201336002503 3.934540*10-11 

0.3 0.30452029340 0.304520293401 7.173049*10-10 

0.4 0.41075232580 0.410752325100 7.14286*10-11 

0.5 0.52109530550 0.521095300100 5.404094*10-09 

0.6 0.63665358210 0.636653554300 2.7814286*10-08 

0.7 0.75858370180 0.758583590100 1.1165811*10-07 

0.8 0.88810598220 0.888105610200 3.7204427*10-07 

0.9 1.02651672600 1.026515650000 1.07582143*10-06 

1.0 1.17520119400 1.175198413000 2.7812686*10-06 

 
Table 2: Comparison of the results obtained by LTSDM with the Exact and Modified Homotopy Perturbation Method for problem 2

 
X Exact MHPM LTSDM MHPM error LTSDM error 

0 1 1 1 0.00000 0.00000 

0.04 0.9607894392 0.9608106692 0.960789545 2.12300*10-05 1.058*10-07 

0.08 0.9231163464 0.9232854120 0.923118053 1.690656*10-04 1.7066*10-06 

0.12 0.8869204367 0.8874885866 0.886929077 5.681499*10-04 8.6403*10-06 

0.16 0.8521437890 0.8534850921 0.852171094 1.341303*10-03 2.73050*10-05 

0.20 0.8187307531 0.8213405980 0.818797419 2.609845*10-03 6.66659*10-05 

0.24 0.7866278611 0.7911217470 0.786766100 4.493886*10-03 1.382389*10-04 

0.28 0.7557837415 0.7628963355 0.756039847 7.112594*10-03 2.561055*10-04 

0.32 0.7261490371 0.7367334755 0.726585945 1.058444*10-02 4.369079*10-04 

0.36 0.6976763261 0.7127037390 0.698376168 1.150274*10-02 6.998419*10-04 
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Table 3: Comparison of the results obtained by LTSDM with the exact and modified homotopy perturbation method for 

problem 3
 

X Exact MHPM LTSDM MHPM error LTSDM error 

0 1 1 1 0.00000 0.00000 

0.1 1.105170918 1.105230748 1.105170968 5.9830*10-05 5.0*10-08 

0.2 1.221402758 1.221843785 1.221403165 4.41027*10-04 4.07*10-07 

0.3 1.349858808 1.351209687 1.349860175 1.350879*10-03 1.367*10-06 

0.4 1.491824698 1.494673169 1.491827922 2.848471*10-03 3.224*10-06 

0.5 1.648721271 1.653535684 1.648727480 4.814413*10-03 6.209*10-06 

0.6 1.822118800 1.829034189 1.822129142 6.915389*10-03 1.0342*10-05 

0.7 2.013752707 2.022315475 2.013767812 8.562768*10-03 1.5105*10-05 

0.8 2.225540928 2.234405354 2.225559662 8.864426*10-03 1.8734*10-05 

0.9 2.459603111 2.466171899 2.459619956 6.568788*10-03 1.6845*10-05 

1.0 2.718281828 2.718281826 2.718281828 2.0*10-09 0 

 

 

 

 
Fig 1: Graphical display of the LTSDM and the exact for the 

problem 1 

 

 
Fig 2: Graphical display of the Exact, LTSDM and the 

MHPM for the problem 2 

 

 
Fig 3: Graphical display of the Exact, LTSDM and the 

MHPM for the problem 3 

 

 

Table 1 displayed the numerical results of the exact and 

LTSDM while Tables 2 and 3 display the comparison of 

Laplace Transform Series Decomposition Method with the 

exact and Modified Homotopy Perturbation Method. The 

error of the results obtained from the three tables show that 

LTSDM gives a better result than MHPM. Likewise, Figs. 1, 

2 and 3 are the graphical representation of the solutions 

obtained in comparison with the exact and MHPM. It was 

also discovered from the figures that the LTSDM converged 

to the exact more rapidly than the Modified Homotopy 

Perturbation Method. 

 

Conclusion 

This work presented an alternative method of solving 

Nonlinear Volterraintegro-differential equation called Laplace 

Transform Series Decomposition Method. The method offers 

significant advantages in terms of its easiness, straightforward 

applicability, its computational effectiveness and its accuracy. 

The comparison of the results obtained with the Laplace 

Transform Series Decomposition Method, the exact and the 

Modified Homotopy Perturbation method showed that 

LTSDM gives a better and accurate result than MHPM and at 

the same time it is capable speeding up the rate of 

convergence of the solution. 

 

References 

Abdul-Majidwazwaz RS 2010. The combined Laplace 

transform–Adomian decomposition method for handling 

nonlinear Volterraintegro–differential equations. Appl. 

Maths. & Computation, 216(4): 1304-1309. 

Afrouzi GA, Ganji DD, Hosseinzadeh H &Talarposhti SF 

2011. Fourth order Volterraintegro-differential equations 

using modified homotopy-perturbation method, The J. 

Maths. & Computer Sci., 3(2): 179-191. 

Akyaz A & Sezer M 1999. A chebyshev collocation method 

for the solution of linear integro-differential equations. 

Int. J. Comput. Math., 72: 491-507. 

Avudainayagam A &Vani C 2000. Wavelet-Galerkin method 

for integro-differential equations. Comp Elect. Engr., 32: 

247-254. 

Bahuguna D, Ujlayan A & Pandey DN 2009. A comparative 

study of numerical methods for solving anintegro-

differential equation,Computers & Maths. with Applic., 

57: 1485-1493. 

Brunner H 1982. Implicitly linear collocation method for 

nonlinear Volterra equations. J. Appl. Numer Maths., 9: 

235-247. 

Filiz A 2013. Fourth order robust numerical method for 

integro-differential equations”. Asian J. Fuzzy & Appl. 

Maths., 1(1): 28-33. 

http://www.sciencedirect.com/science/journal/00963003
http://www.sciencedirect.com/science/journal/00963003


Laplace Method for solving nonlinear VolterraIntegro Differential Equation 

FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; April, 2017: Vol. 2 No. 1A  pp 96 - 100 
100 

He JH 1998a. Approximate analytical solution for seepage 

flow with fractional derivatives in porous media. 

Comput. Methods Appl. Mech. Engr., 167(1-2): 57-68. 

He JH 1998b. Approximate solution of nonlinear differential 

equations with convolution product nonlinearities. 

Comput. Methods Appl. Mech. Engr., 167(1-2): 69-73. 

He JH 2000. A review on some new recently developed 

nonlinear analytical techniques. Int. J. Nonlinear Sci. 

Numer.Simul., 1(1): 51-70. 

He JH 2004. Asymptotology of homotopy perturbation 

method. Appl. Math. Comput., 156: 591-596. 

He JH 2005a. Limit cycle and bifurcation of nonlinear 

problems. Chaos, Solutions Fractals, 26: 827-833. 

He JH 2005b. Homotopy perturbation method for bifurcation 

of nonlinear problems. Int. J. Nonlinear Sci. Numer. 

Simul., 6(2): 207-208. 

Liu HM 2004. Generalized variational principles for ion 

acoustic plasma waves by He’s semiinverse method. Int. 

J. Nonlinear Sci. Numer.Simul., 5(1): 95-96 

Liu HM 2005. Variational approach to nonlinear 

electrochemical system. Chaos, Solitons Fractals, 

23(2): 573-576. 

Majid K 2015. A new algorithm for higher order integro-

differential equations. African Mathematical Union and 

Springer, 26; 247-255. 

Manafianheris J 2012. Solving the integro-differential 

equationsusing the modified laplace 

adomiandecomposition method. J. Mathematical 

Extension, 6(1): 65-79. 

Sepehrian B & Razzaghi M 2004. Single-term Walsh series 

method for the Volterraintegro-differential 

equations.Engineering Analysis with Boundary Element, 

28: 1315-1319. 

Volterra V 1931. Leçons Sur la TheorieMathematique de la 

Lutte Pour La Vie. Gauthier-villars, Paris.  

Volterra V 1959,. Theory of Functional and of Integro-

Differential Equations Dover. New York. 

Yalcinbas, S 2002, Taylor polynomial solutions of nonlinear 

Volterra-Fredholm integral equations. Appl. Math. 

Comput., 127: 195-206. 

Wazwaz AM 2000a. Solitary wave solutions for the modified 

Kdv equation by Adomian decomposition. Int. J. Appl. 

Maths., 3: 361-368. 

Zhao J & Corless RM 2006. Compact finite difference 

method has been used for integro-differential equations. 

Appl. Math. Comput., 177: 271-288. 

 

 

 

 


